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Summary: Chiral, non-racemic 1-lithio-2-alkenyl carbamates, generated by stereospecific deprotonation, are 
stannylated in a syn-SEs reaction. The optically active allylstannanes thus obtained, undergo enantioselective 
homoaldol addition under the influence of TiCI,. 

Oxy-substituted allylic stannanes have some importance in stereocontrolled organic synthesis.‘,‘) However, only 

few optically active alkenyl stannanes, prepared by resolution of the racemates, have been reported.3) 

Furthermore, no information is available on the stereochemistry of the delithiostannylation in allylic systems, 

owing to the fact that configurationally stable chiral allyllithium derivatives were unknown. 

Recently, we succeeded in generating the non-racemic a-lithiocarbamate (lR,2E)-2 by stereospecific 

deprotonation4) of the 2-alkenyl carbamate (lR,2E)-1, followed by its titanation and a-hydroxyalkylation. We now 

investigated the stannylation. The suspension of (lR,2E)-2, obtained from the carbamate (lR,2E)-1, 90% ee, was 

trapped at -70 ‘C with chlorotrimethylstannane. 5, After chromatographic separation of some unstable a-adduct 4, 

the y-stannane@ (+)-(lZ,3R)-3 was isolated with 52% yield, [a] D20 = +133, c = 1.68, CHCl,, (run 1). Starting 

from the stereoisomer (lS,2Z)-1, readily prepared from ethyl (S)-lactate 7), (+)-(12,3R)-36) (55%), [a],20 = +138, 

c = 1.88, CHCl,, was also obtained besides 5% of (-)-(1E,3S)-35*6*8) (run 2), Scheme 1. 
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The absolute configuration of the stannanes 3 was determined by the application of the Brewster rule9) which 

gives reliable results in cases where the substituents at the stereogenic centre differ significantly in their 

polarizability (Me$n > CH=CHOCb > CH3 > H). Thus, the (R)-configuration was assigned to (+)-3. By chemical 

correlation, as outlined below (Scheme 2 and 3), the correct assignment is confiied, the enantiomeric excess of 

the stat-mane (lZ,3R)-3 was found to be >76% (run 1) and >83% (run 2), respectively. Hence, the 

delithiostannylation proceeds in a syn-S E9 fashion; the chirality transmission, including three further electrophilic 

substitution steps, is at least 80% ee.‘O) 

Unlike to a-(oxyallyl)stannanes, 3, 3 does not undergo an uncatalyzed addition reaction with benzaldehyde at 

150 ‘C. In contrast, the presence of equimolar amounts of Tic& in a solution of (lZ,3R)-3 and of an aldehyde at 

-78 “C causes, surprisingly, the formation of the diastereomerically pure y-addition products 6 with 82 to 

83% ee11,1z13) (Scheme 2 l Table 1). The formal allylic retention contrasts to the regiochemical course of the usual 

L,ewis acid catalyzed allylstannane reactions. *) The result is best explained by assumption of a stereospecific 

formation (syn-SE,) of the a-trichlorotitanium substituted intermediate 5 via TS A followed by the stereospecific 

aldehyde addition via TS B in the usual way.4) 

Since (lZ,3R)- and (lE,3S)-3 differ in both stereogenic elements, a syn-stereospecific metal exchange must lead to 

the intermediate 5 with equal absolute configuration; hence, the separation of the minor stereoisomer is not 

necessary for this purpose. 
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The reagent 5 exhibits a high degree of reagent-controlled chirality transfer: In the reaction of (lZ,3R)-3, prepared 

from (lR,2E)-1, with (.I+2-(benzyloxy)propanal (S)-7, the enantiomerically pure homoaldol adducts4a) (-)-8 and 

(+)-9 were formed in a ratio of 88:12, whereas the reaction of rat-(lZ)-3 gave both in equal amounts14) 

(Scheme 3). 

Scheme 3 

3 (S)-7 (-)-8 (+)-9 

rat-( lZ)-3 51 49 

(lZ,3R)-3 88 12 

Apart from constituting masked optically active y-hydroxyketones, the carbamates 6a, 8 or 9 have been utilized as 

enolate equivalents in a highly stereoselective Lewis acid catalyzed synthesis of substituted tetrahydrofurans.15) 
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